Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509263

RESUMO

Hybridization between invasive pest species may lead to significant genetic and economic impacts that require close monitoring. The two most invasive and destructive termite species worldwide, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann), have the potential for hybridization in the field. A three-year field survey conducted during the dispersal flight season of Coptotermes in Taiwan identified alates with atypical morphology, which were confirmed as hybrids of the two Coptotermes species using microsatellite and mitochondrial analyses. Out of 27,601 alates collected over three years, 4.4% were confirmed as hybrid alates, and some advanced hybrids (>F1 generations) were identified. The hybrid alates had a dispersal flight season that overlapped with the two parental species 13 out of 15 times. Most of the hybrid alates were females, implying that mating opportunities beyond F1 may primarily be possible through female hybrids. However, the incipient colony growth results from all potential mating combinations suggest that only backcross colonies with hybrid males could sometimes lead to brood development. The observed asymmetrical viability and fertility of hybrid alates may critically reduce the probability of advanced-hybrid colonies being established in the field.

2.
Pest Manag Sci ; 80(3): 1137-1144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872844

RESUMO

BACKGROUND: To control subterranean termite pests, chitin synthesis inhibitor (CSI) baits have been widely applied. Despite CSI baits having low impacts on the environment, they require a lengthy time period to eliminate colonies. 20-hydroxyecdysone (20E) was proposed to speed up the baiting process as it showed faster mortality than CSI baits. However, the efficacy of 20E has previously not been tested at the colony level prior to applying in the field. RESULTS: We compared the effect of 20E, 20E + noviflumuron, noviflumuron and untreated control using colonies of Coptotermes formosanus. Our result revealed that both 20E and 20E + noviflumuron did not accelerate colony elimination and termite activity remained relatively stable during the observation periods. To determine the limited effects of 20E, we further investigated feeding duration and consumption amount of 20E with different concentrations (control, 100 and 1000 ppm) for 10 days. Termites ceased feeding after 1 day in 100 and 1000 ppm treatment and 100% mortality was observed within 10 days in 1000 ppm 20E, while mortality in the 100 ppm 20E treated group was much lower than that in the 1000 ppm group. Furthermore, no termites molted in the control and termites died from hyperecdysonism in 1000 ppm 20E treatment, whereas about 20% of termites molted in 100 ppm 20E. CONCLUSION: This study demonstrated that 20E may not be suitable as a sole active ingredient to accelerate elimination of a subterranean termite colony, while CSI baits and lower concentrations of 20E may reduce the lengthy time period in colony elimination. © 2023 Society of Chemical Industry.


Assuntos
Benzamidas , Fluorocarbonos , Inseticidas , Isópteros , Animais , Ecdisterona , Controle de Insetos , Hidrocarbonetos Fluorados
3.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952215

RESUMO

With recent evidence of hybridization events in the field, the phenotypic traits of F1 hybrid colonies of 2 destructive subterranean termite species, Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) remain to be investigated. In this study, laboratory colonies of 2 conspecific pairings and 2 heterospecific pairings (hybrid F = ♀C. formosanus × ♂C. gestroi, hybrid G = ♀C. gestroi × ♂C. formosanus) were examined in Florida, USA, and in Taiwan. Colony nest architecture for both hybrids displayed disorganized carton materials compared to the defined trabecular carton of both parental species. Soldier head measurements were not a reliable approach for diagnostic purposes, as soldier morphometric traits widely overlapped across all mating combinations, except for hybrid F soldiers displaying abnormally long mandibles. Hybrid F soldiers' mandibles also remained parallel when at rest. However, 4 qualitative morphological differences in soldiers were determined for diagnostic purposes. First, the fontanelle in both hybrids is horizontally ellipsoid whereas subcircular in C. gestroi and trianguliform in C. formosanus. Second, sclerotized striations along the postmental sulcus are present in C. gestroi, absent in C. formosanus, and intermediate in both hybrid soldier types. Third, each lateral margin of the fontanelle is flanked by 2 setae in C. formosanus and both hybrids, while a single seta resides on each side of the fontanelle in C. gestroi. Finally, C. gestroi and hybrid soldiers' heads are characterized by a bulging vertex that is lacking in C. formosanus. Therefore, a combination of these 4 characteristics now allows for soldier identification of hybrid Coptotermes.


Assuntos
Baratas , Isópteros , Animais , Isópteros/genética , Hibridização Genética , Fenótipo , Florida
4.
J Econ Entomol ; 116(3): 909-915, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37156234

RESUMO

The traditional stake survey and in-ground (IG) monitoring stations have been ineffective in aggregating the Asian subterranean termite, Coptotermes gestroi (Wasmann) in southeastern Florida. In this study, we used both IG and above-ground (AG) Sentricon stations to monitor and bait C. gestroi, and as expected, none of the 83 IG stations was intercepted. Despite this, AG bait stations with 0.5% noviflumuron were successfully used to eliminate C. gestroi colonies. From 2 field experiments, the mean colony elimination time (±SD) using AG baits were 6.4 ± 3.8 wk (n = 4) and 8.0 ± 2.1 wk (n = 12), respectively. Such results were compatible with baiting studies against field colonies of C. gestroi elsewhere, that is, 4-9 wk. The successful rates in monitoring and baiting of C. gestroi with IG stations in other regions also varied, which may be due to the variabilities in tunnel geometry of this species in different environments. In areas with established C. gestroi populations, routine inspection for signs of activity in structures and surrounding trees can be a critical component for pest control providers for early detection of infestation and colony elimination with AG bait stations.


Assuntos
Baratas , Isópteros , Animais , Árvores , Benzamidas , Hidrocarbonetos Fluorados
5.
Curr Biol ; 33(10): 2075-2080.e3, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37054713

RESUMO

Perfume making in male orchid bees is a unique behavior that has given rise to an entire pollination syndrome in the neotropics.1,2 Male orchid bees concoct and store species-specific perfume mixtures in specialized hind-leg pockets3 using volatiles acquired from multiple environmental sources, including orchid flowers.4,5 However, the function and the ultimate causes of this behavior have remained elusive.2,6 Although previous observations suggested that male perfumes serve as chemical signals, the attractiveness for females has not be shown.7,8 Here, we demonstrate that the possession of perfume increases male mating success and paternity in Euglossa dilemma, a species of orchid bees recently naturalized in Florida. We supplemented males reared from trap-nests with perfume loads harvested from wild conspecifics. In dual-choice experiments, males supplemented with perfumes mated with more females, and sired more offspring, than untreated, equal-aged, control males. Although perfume supplementation had little effect on the intensity of male courtship display, it changed the dynamics of male-male interactions. Our results demonstrate that male-acquired perfumes are sexual signals that stimulate females for mating and suggest that sexual selection is key in shaping the evolution of perfume communication in orchid bees.


Assuntos
Perfumes , Feminino , Abelhas , Masculino , Animais , Corte , Especificidade da Espécie , Florida , Flores
6.
J Insect Sci ; 23(2)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916276

RESUMO

Nitrogen, a limiting growth factor in wood-feeding insects, was hypothesized to play a role in the recently discovered behavior of subterranean termites returning to the nest to molt. Coptotermes gestroi (Wasmann) exuviae is approximately 11% N by dry weight, and therefore a potentially rich source of recyclable nitrogen. Exuviae from a C. gestroi colony were marked with immunoglobulin G (IgG) and were fed to two-year-old C. gestroi colonies. IgG-marked exuviae were detected with an enzyme-linked immunosorbent assay. The IgG marker was later detected in every caste and life stage except first-instar larvae (L1). The proportion of individuals positive for the marker varied by caste, with the queens always being positive for the marker. The queens and second-or-higher-instar workers (W2+) had significantly higher concentrations of the marker than the eggs and L1. The trophic path of exuviae includes individuals that directly fed on marked exuviae (workers and possibly second-instar larvae) and individuals that secondarily received marked exuviae through trophallaxis (queens, kings, and soldiers). This study described the trophic path of consumed exuviae and demonstrated its role in the recycling of nitrogen in a subterranean termite. Molting at the central nest may be an efficient means to transfer nitrogen from shed exuviae to recipients and may be a nitrogen recycling behavior conserved from a termite ancestor.


Assuntos
Baratas , Isópteros , Animais , Óvulo , Larva , Imunoglobulina G
7.
J Econ Entomol ; 116(2): 538-545, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36749607

RESUMO

Coptotermes formosanus Shiraki and C. gestroi (Wasmann) are economically important structural pests in urban areas. Due to anthropogenic activity, both species have been introduced into the United States, with their respective invasive ranges now overlapping in Florida, and the two species have the capability to hybridize. The potential for structural damage from subterranean termite colonies primarily depends on colony size. However, long-term colony growth and wood consumption capabilities of hybrid Coptotermes colonies remain to be investigated, to determine the potential pest status of field-established hybrid colonies. In this study, we investigated long-term colony development over four years to determine if aging hybrid colonies display vigor in terms of colony growth. In addition, we compared wood consumption rate of hybrid colonies to compare their potential impact as structural pests with the two parental species. In aging colonies (four-year-old), both hybrid mating types displayed a colony growth equivalent to C. formosanus. However, the wood consumption rates of four-year-old colonies of the two parental Coptotermes species and their hybrids were similar, indicating equal damaging potential. We also found multiple secondary reproductives in hybrid colonies, even in the presence of primary reproductives, which may favor their potential establishment and spread. Although hybrid colonies or hybrid alates have yet to be detected in the field, our results suggest that such hybrid colonies would be an additional termite threat in the future if they were established in the field.


Assuntos
Isópteros , Animais , Espécies Introduzidas , Madeira , Florida , Reprodução
8.
Environ Entomol ; 52(2): 254-258, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36773009

RESUMO

Wood-feeding termites have a nitrogen-poor diet and have therefore evolved nitrogen conservation strategies. However, termite workers molt periodically, and throughout the lifetime of a colony, millions of exuviae, a nitrogen-rich resource, are produced by the colony. In Coptotermes Wasmann, workers foraging at remote feeding sites must return to the central part of the nest to molt, where the queen, king, eggs, and larvae are located. It was hypothesized that this molting-site fidelity is an efficient way to recycle nitrogen for reproduction and colony growth, as nestmates involved in exuviae consumption can directly transfer such resources to individuals engaged in reproduction (the queen) or growth (larvae). This study investigates whether incipient colonies of C. gestroi (Wasmann) can gain additional biomass when they are fed supplementary exuviae. Incipient colonies were reared in nitrogen-poor or nitrogen-rich conditions, and 0, 1, 5, or 10 exuviae were added to 3-month-old colonies. After 6.5 months, colonies reared in nitrogen-poor environments gained significantly more biomass when exuviae were added than colonies with no added exuviae. However, the addition of exuviae had no effect on colony growth for colonies reared in nitrogen-rich environments. In a second experiment, queens from colonies in which exuviae were effectively removed laid fewer eggs than queens from colonies in which exuviae were not removed. Therefore, consumption of exuviae from molting individuals by nestmates is an important part of the nitrogen recycling strategy in Coptotermes colonies, as it facilitates queen oviposition and colony growth, especially when such colonies have limited access to nitrogen-rich soils.


Assuntos
Baratas , Isópteros , Feminino , Animais , Oviposição , Reprodução , Larva
9.
Commun Biol ; 6(1): 83, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681783

RESUMO

Termites (Blattodea: Isoptera) have evolved specialized defensive strategies for colony protection. Alarm communication enables workers to escape threats while soldiers are recruited to the source of disturbance. Here, we study the vibroacoustic and chemical alarm communication in the wood roach Cryptocercus and in 20 termite species including seven of the nine termite families, all life-types, and all feeding and nesting habits. Our multidisciplinary approach shows that vibratory alarm signals represent an ethological synapomorphy of termites and Cryptocercus. In contrast, chemical alarms have evolved independently in several cockroach groups and at least twice in termites. Vibroacoustic alarm signaling patterns are the most complex in Neoisoptera, in which they are often combined with chemical signals. The alarm characters correlate to phylogenetic position, food type and hardness, foraging area size, and nesting habits. Overall, species of Neoisoptera have developed the most sophisticated communication system amongst termites, potentially contributing to their ecological success.


Assuntos
Baratas , Isópteros , Humanos , Animais , Filogenia , Comunicação , Etologia
10.
Sci Rep ; 12(1): 7837, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552445

RESUMO

Elaborate task allocation is key to the ecological success of eusocial insects. Termite colonies are known for exhibiting age polyethism, with older instars more likely to depart the reproductive center to access food. However, it remains unknown how termites retain this spatial structure against external disturbances. Here we show that a subterranean termite Coptotermes formosanus Shiraki combines age polyethism and behavioral flexibility to maintain a constant worker proportion at the food area. Since this termite inhabits multiple wood pieces by connecting them through underground tunnels, disastrous colony splitting events can result in the loss of colony members. We simulated this via weekly removal of all individuals at the food area. Our results showed that termites maintained a worker proportion of ~ 20% at the food area regardless of changes in total colony size and demographic composition, where younger workers replaced food acquisition functions to maintain a constant worker proportion at the food area. Food consumption analysis revealed that the per-capita food consumption rate decreased with younger workers, but the colony did not compensate for the deficiency by increasing the proportion of workers at the feeding site. These results suggest that termite colonies prioritize risk management of colony fragmentation while maintaining suitable food acquisition efficiency with the next available workers in the colony, highlighting the importance of task allocation for colony resiliency under fluctuating environments.


Assuntos
Isópteros , Distribuição por Idade , Animais , Alimentos , Reprodução , Madeira
11.
Front Zool ; 18(1): 61, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903250

RESUMO

BACKGROUND: Foraging in group living animals such as social insects, is collectively performed by individuals. However, our understanding on foraging behavior of subterranean termites is extremely limited, as the process of foraging in the field is mostly concealed. Because of this limitation, foraging behaviors of subterranean termites were indirectly investigated in the laboratory through tunnel geometry analysis and observations on tunneling behaviors. In this study, we tracked subsets of foraging workers from juvenile colonies of Coptotermes formosanus (2-yr-old) to describe general foraging behavioral sequences and to find how foraging workers allocate time between the foraging site (food acquisition or processing) and non-foraging site (food transportation). RESULTS: Once workers entered into the foraging site, they spent, on average, a significantly longer time at the foraging site than the non-foraging site. Our clustering analysis revealed two different types of foraging workers in the subterranean termite based on the duration of time they spent at the foraging site and their foraging frequency. After entering the foraging site, some workers (cluster 1) immediately initiated masticating wood fragments, which they transferred as food boluses to recipient workers at the foraging site. Conversely, the recipient workers (cluster 2) moved around after entering the foraging site and received food from donating workers. CONCLUSIONS: This study provides evidence of task specialization within foraging cohorts in subterranean termites.

12.
Sci Rep ; 11(1): 21252, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711880

RESUMO

Intrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.

13.
Am Nat ; 198(5): E136-E151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648396

RESUMO

AbstractCuticular hydrocarbons (CHCs) are waxy compounds on the surface of insects that prevent desiccation and frequently serve as chemical signals mediating social and mating behaviors. Although their function in eusocial species has been heavily investigated, little is known about the evolution of CHC-based communication in species with simpler forms of social organization lacking specialized castes. Here we investigate factors shaping CHC variation in the orchid bee Euglossa dilemma, which forms casteless social groups of two to three individuals. We first assess geographic variation, examining CHC profiles of males and females from three populations. We also consider CHC variation in the sister species, Euglossa viridissima, which occurs sympatrically with one population of E. dilemma. Next, we consider variation associated with female behavioral phases, to test the hypothesis that CHCs reflect ovary size and social dominance. We uncover a striking CHC polymorphism in E. dilemma spanning populations. In addition, we identify a separate set of CHCs that correlate with ovary size, social dominance, and expression of genes associated with social behavior, suggesting that CHCs convey reproductive and social information in E. dilemma. Together, our results reveal complex patterns of variation in which a subset of CHCs reflect the social and reproductive status of nestmates.


Assuntos
Hidrocarbonetos , Ovário , Animais , Abelhas/genética , Feminino , Masculino , Reprodução , Comportamento Social , Predomínio Social
14.
J Econ Entomol ; 114(6): 2466-2472, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668542

RESUMO

Subterranean termite control methods using chitin synthesis inhibitors (CSIs) aim at eliminating colonies that feed upon a bait formulation. Several benzoylurea active ingredient formulations are currently commercially available as alternative termite management strategies to liquid termiticides. Individual workers need to molt on a regular basis and CSIs interfere with such molting process, allowing sufficient time for the acquisition of a colony-wide lethal dose prior to widespread mortality. As workers progressively die, the colony eventually collapses, leaving only soldiers and primary reproductives that starve to death. One common observation is that young workers often die early owing to their relatively short molting cycle. However, the absence of brood in dying colonies raises questions about the potential fate of eggs laid by the queen. This study aims to determine if CSI baits also terminate the ability of a colony to produce a new cohort of workers by disabling the ongoing brood development. Incipient termite colonies were used to test the impact of noviflumuron on the queen's ability to lay eggs and on the eggs' ability to hatch. Our results showed that queens in colonies exposed to CSI not only initially laid less eggs than the control queens, but eggs also did not develop and were progressively cannibalized, eventually leading to colony establishment failure. This result implies that queens of mature colonies exposed to CSI would lose the ability to lay viable eggs as the colony collapses, leading to an absence of worker replacement, aiding in colony elimination.


Assuntos
Isópteros , Animais , Quitina , Controle de Insetos , Muda , Oviposição
15.
Proc Biol Sci ; 288(1954): 20210998, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34255998

RESUMO

In collective animal motion, coordination is often achieved by feedback between leaders and followers. For stable coordination, a leader's signals and a follower's responses are hypothesized to be attuned to each other. However, their roles are difficult to disentangle in species with highly coordinated movements, hiding potential diversity of behavioural mechanisms for collective behaviour. Here, we show that two Coptotermes termite species achieve a similar level of coordination via distinct sets of complementary leader-follower interactions. Even though C. gestroi females produce less pheromone than C. formosanus, tandem runs of both species were stable. Heterospecific pairs with C. gestroi males were also stable, but not those with C. formosanus males. We attributed this to the males' adaptation to the conspecific females; C. gestroi males have a unique capacity to follow females with small amounts of pheromone, while C. formosanus males reject C. gestroi females as unsuitable but are competitive over females with large amounts of pheromone. An information-theoretic analysis supported this conclusion by detecting information flow from female to male only in stable tandems. Our study highlights cryptic interspecific variation in movement coordination, a source of novelty for the evolution of social interactions.


Assuntos
Isópteros , Animais , Feminino , Masculino , Feromônios
16.
J Econ Entomol ; 114(3): 1249-1255, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33860298

RESUMO

The development of baits for subterranean termite control over the past 25 yr has provided cost-effective alternatives to liquid termiticide treatments. Current bait products use one of the few available benzoylurea chitin synthesis inhibitors (CSIs) labeled for subterranean termites. These insecticides are used because of their nonrepellency, their slow-acting mode of action, and their dose-independent lethal time. Although many studies have provided ample evidence of the efficacy of CSI baits for subterranean termite colony elimination, most have focused on hexaflumuron and noviflumuron. However, bait products using alternative CSIs have not received the same level of scrutiny, limiting the amount of evidence proving their efficacy. One such compound is novaluron, the active ingredient currently used in the Trelona ATBS-Advance Termite Baiting System bait product. The current study independently tested the efficacy of this commercially available bait formulation against whole colonies of Coptotermes gestroi (Wamann) (~63,910 workers) in the laboratory, using an extended experimental setup to simulate a 15-m foraging distance from the central part of the nest to the bait, while having access to alternative food sources. Treated colonies progressively ceased to feed on wood items within 45 d after being provided access to the novaluron bait formulation, with a subsequent progressive collapse of the population, leading to colony elimination by 91 d. This study therefore confirms the efficacy of novaluron baits against subterranean termites, and currently remains one of the few CSIs that can be applied for the successful control of Coptotermes infestations.


Assuntos
Baratas , Inseticidas , Isópteros , Animais , Controle de Insetos , Laboratórios , Compostos de Fenilureia
17.
Heliyon ; 7(4): e06697, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33912704

RESUMO

Subterranean termites are hemimetabolous social insects where most of the individuals in a colony molt on a regular basis until they die. Nitrogen is a limiting growth factor in wood-feeding insects, such as termites. Because the exuviae of molting termites are consumed by nestmates, it is possible that exuviae represent a potential source of nitrogen that could be recycled and be part of the overall nitrogen conservation strategy of the colony. Although it was documented that cockroach exuviae can contain relatively high levels of nitrogen, the nitrogen content of subterranean termite exuviae has not been examined. This study determines the nitrogen content of Coptotermes gestroi (Wasmann) exuviae collected from four-year-old laboratory colonies using a carbon/nitrogen analyzer. Coptotermes gestroi exuviae contained 11.24 ± 0.64% N (Mean ± SD). The exuviae had a higher proportion of nitrogen than whole bodies of termites (~10.46%), wood (~0.12%), and organic soil (~2.49%). These results support the importance of exuviae consumption by nestmates during the ecdysis process as an aspect of nitrogen conservation strategies in Coptotermes colonies.

18.
Commun Biol ; 4(1): 196, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580197

RESUMO

Native to eastern Asia, the Formosan subterranean termite Coptotermes formosanus (Shiraki) is recognized as one of the 100 worst invasive pests in the world, with established populations in Japan, Hawaii and the southeastern United States. Despite its importance, the native source(s) of C. formosanus introductions and their invasive pathway out of Asia remain elusive. Using ~22,000 SNPs, we retraced the invasion history of this species through approximate Bayesian computation and assessed the consequences of the invasion on its genetic patterns and demography. We show a complex invasion history, where an initial introduction to Hawaii resulted from two distinct introduction events from eastern Asia and the Hong Kong region. The admixed Hawaiian population subsequently served as the source, through a bridgehead, for one introduction to the southeastern US. A separate introduction event from southcentral China subsequently occurred in Florida showing admixture with the first introduction. Overall, these findings further reinforce the pivotal role of bridgeheads in shaping species distributions in the Anthropocene and illustrate that the global distribution of C. formosanus has been shaped by multiple introductions out of China, which may have prevented and possibly reversed the loss of genetic diversity within its invasive range.


Assuntos
Evolução Molecular , Espécies Introduzidas , Isópteros/genética , Polimorfismo de Nucleotídeo Único , Migração Animal , Animais , Teorema de Bayes , Ásia Oriental , Isópteros/patogenicidade , Modelos Genéticos , Filogenia , Dinâmica Populacional , Estados Unidos
19.
Cell Mol Life Sci ; 78(6): 2749-2769, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388854

RESUMO

Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.


Assuntos
Evolução Biológica , Isópteros/metabolismo , Animais , Celulose/metabolismo , Fósseis , Microbioma Gastrointestinal , Isópteros/classificação , Isópteros/genética , Filogenia , Simbiose
20.
Ecol Evol ; 10(18): 10095-10104, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005366

RESUMO

Cuticular hydrocarbons (CHCs) have, in insects, important physiological and ecological functions, such as protection against desiccation and as semiochemicals in social taxa, including termites. CHCs are, in termites, known to vary qualitatively and/or quantitatively among species, populations, castes, or seasons. Changes to hydrocarbon profile composition have been linked to varying degrees of aggression between termite colonies, although the variability of results among studies suggests that additional factors might have been involved. One source of such variability may be colony age, as termite colony demographics significantly change over time, with different caste and instar compositions throughout the life of the colony. We here hypothesize that the intracolonial chemical profile heterogeneity would be high in incipient termite colonies but would homogenize over time as a colony ages and accumulates older workers in improved homeostatic conditions. We studied caste-specific patterns of CHC profiles in Coptotermes gestroi colonies of four different age classes (6, 18, 30, and 42 months). The CHC profiles were variable among castes in the youngest colonies, but progressively converged toward a colony-wide homogenized chemical profile. Young colonies had a less-defined CHC identity, which implies a potentially high acceptance threshold for non-nestmates conspecifics in young colonies. Our results also suggest that there was no selective pressure for an early-defined colony CHC profile to evolve in termites, potentially allowing an incipient colony to merge nonagonistically with another conspecific incipient colony, with both colonies indirectly and passively avoiding mutual destruction as a result.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...